Sharp large deviations for the non-stationary Ornstein-Uhlenbeck process

نویسندگان

  • Bernard Bercu
  • Laure Coutin
  • Nicolas Savy
چکیده

For the Ornstein-Uhlenbeck process, the asymptotic behavior of the maximum likelihood estimator of the drift parameter is totally different in the stable, unstable, and explosive cases. Notwithstanding of this trichotomy, we investigate sharp large deviation principles for this estimator in the three situations. In the explosive case, we exhibit a very unusual rate function with a shaped flat valley and an abrupt discontinuity point at its minimum. A.M.S. Classification: 60F10, 60G15, 62A10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp large deviations for the fractional Ornstein - Uhlenbeck process

We investigate the sharp large deviation properties of the energy and the maximum likelihood estimator for the Ornstein-Uhlenbeck process driven by a fractional Brownian motion with Hurst index greater than one half. A.M.S. Classification: 60F10, 60G15, 60J65

متن کامل

Large deviations for the Ornstein-Uhlenbeck process with shift

We investigate the large deviation properties of the maximum likelihood estimators for the Ornstein-Uhlenbeck process with shift. We propose a new approach to establish large deviation principles which allows us, via a suitable transformation, to circumvent the classical non-steepness problem. We estimate simultaneously the drift and shift parameters. On the one hand, we prove a large deviation...

متن کامل

The Stationary Distributions of Doubly Skew Ornstein-Uhlenbeck Processes and Markov-modulated Skew Ornstein-Uhlenbeck Processes

In this paper, we consider the stationary density function of the doubly skew Ornstein-Uhlenbeck process. We present the explicit formula for the stationary density function and show that this process is positive Harris recurrent and geometrically ergodic. We expand our method to the more general cases in which the multiple parameters are present and we try to consider the stability of the skew...

متن کامل

On Dynamical Gaussian Random Walks

Motivated by the recent work of Benjamini, Häggström, Peres, and Steif (2003) on dynamical random walks, we: (i) Prove that, after a suitable normalization, the dynamical Gaussian walk converges weakly to the Ornstein–Uhlenbeck process in classical Wiener space; (ii) derive sharp tailasymptotics for the probabilities of large deviations of the said dynamical walk; and (iii) characterize (by way...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017